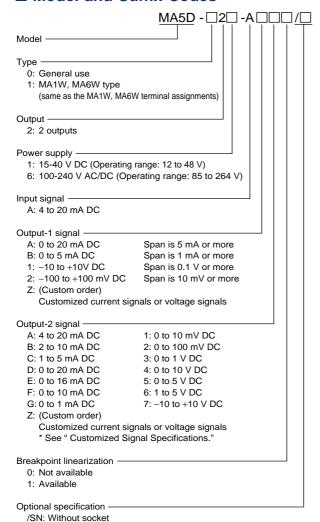
General Specifications

Model MA5D Distributor (2-output, Free Range Type) **NTXUL**


GS 77J04A05-02E

General

The MA5D is a plug-in type distributor that is used in combination with a two-wire type transmitter to convert the transmitter's 4 to 20 mA DC signals into isolated DC current or DC voltage signals.

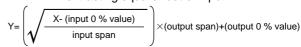
- Output range setting, selection of square root extractor and breakpoint linearization (breakpoint setting), I/O adjustment, I/O monitoring, and loop back test can be made using the optional Parameter Setting Tool (VJ77) or Handy Terminal (JHT200).
- The operation indicating lamp shows the operation status, abnormalities in a setting etc.
- I/O adjustment can be made using the switches on the front panel of the MA5D without a setting tool such as Handy Terminal.
- Supports BARD-800 and -810.

■ Model and Suffix Codes

■ Ordering Information

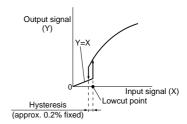
Specify the following when ordering.

- Model and suffix codes: e.g. MA5D-026-AAA0
- Output-1 range: e.g. 4 to 20 mA DC
 Specify a lowcut point when "with square root extractor" is required: e.g. Lowcut point 0.4%
 The distributor will be shipped with a lowcut point of 0.6% if no specification of lowcut point.
 Specify breakpoints in Work Sheet when linearization is required.


■ Input/Output Specifications

Input signal: 4 to 20 mA DC signal from transmitter Input resistance: 250 Ω

Transmitter power supply: 25.25±0.25 V DC (provided with a current limiter to keep the current between 25 and 35 mA)


Allowable conductor resistance (RL): Up to [(20 – transmitter's minimum operating voltage) V/0.02 A] Ω

Maximum allowable input: 40 mA DC
Square root extractor: Outputted against the result of
extracting square root of input.

Lowcut point setting range: 0.3 to 100% of input, setting available by 0.1% notch

Output characteristic: Output for lowcut point or less is cramped with straight line proportional to input.

Output signal: 2 points of DC current or DC voltage signals

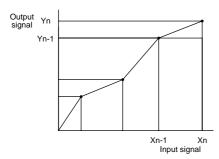
Output-1 signal setting range:

Output-1 signal suffix code	Setting range
Α	0 to 20 mA DC Span is 5 mA or more
В	0 to 5 mA DC Span is 1 mA or more
1	±10 V DC Span is 0.1 V or more
2	±100 mV DC Span is 10 mV or more

Allowable load resistance:

Voltage output: (Common to output-1 and output-2) $2~k\Omega~or~more~for~\pm 5~V~DC$ $10~k\Omega~or~more~for~\pm 10~V~DC$ $250~k\Omega~or~more~for~\pm 100~mV~DC$

Current output:


Output-1: 15 (V)/max. output (A) (Ω) or less Output-2: 7 (V)/max. output (A) (Ω) or less

Linearization:

Breakpoint: Up to 32 points (Set a relationship between input and output with % value over the span.)

Allowable setting range of breakpoint: -6 to +106% (both input and output)

- With 4 significant digits; can be set to the second place of a decimal point.
- Set breakpoints according to the following. For input: $-6.0\% \leqq X_0 < X_1 < X_2 \cdots X_{n-1} < X_n \leqq 106.0\%$ For output: $-6.0\% \leqq Y_0$ to $Y_n < 106.0\%$

Adjustment range: (Common to output-1 and output-2) Input adjustment: ±1% of span or more (Zero/Span) Output adjustment: ±5% of span or more (Zero/Span)

■ Standard Performance

Accuracy rating: ±0.1% of span

However, the accuracy is not guaranteed for output levels less than 0.5% of the span of a 0 to X mA output range type. For square root extractor input, $\pm 1\%$ of span when the input is 2% or less.

The accuracy is limited according to the output-1 range setting.

Accuracy Calculation

Accuracy = Input accuracy + Output accuracy (%) (Output accuracy for output-2 is $\pm 0.05\%$.) Input accuracy: $\pm 0.05\%$

Compare the specified output-1 range with the output-1 range in the table below (narrower range) and choose accuracy calculation conditions.

Output-1 accuracy = $\pm 0.05\% \times a/b$

Outp	out-1 signal suffix code	Accuracy calculation condition	
	Output range	а	b
Α	0 to 20 mA DC	10 (mA)	
В	0 to 5 mA DC	2.5 (mA)	
	±2.5 V DC	1 (V)	
1	Outside of ±2.5 V DC	4 (\ ()	Outnut anan
	and within ±10 V DC	4 (V)	Output span
	±25 mV DC	10 (mV)	
2	Outside of ±25 mV DC	40 (mV)	
	and within ±100 mV DC	.5 (1117)	

However, $\pm 0.05\%$ is applied if an output-1 accuracy obtained from the expression is less than $\pm 0.05\%$. If 1 or more is set for the line segment gain of linearization, multiply the input/output accuracy by the value of line segment gain.

Line segment gain (slope) is the maximum value calculated from the following expression.

Line segment gain =
$$\frac{Y_n - Y_{n-1}}{X_n - X_{n-1}}$$

Response speed: 150 ms, 63% response (10 to 90%) Effect of power supply voltage fluctuations:

 $\pm 0.1\%$ of span or less for the fluctuation within the operating range of each power supply voltage specification.

Effect of ambient temperature change:

 $\pm 0.15\%$ of span or less for a temperature change of 10°C.

■ Power Supply and Isolation

Power supply rated voltage:

15-40 V DC ... or

Power supply input voltage:

15-40 V DC ... (±20%) or

100-240 V AC/DC = (-15, +20%) 50/60 Hz

Power consumption:

24 V DC 3.5 W, 110 V DC 3.4 W 100 V AC 6.5 VA, 200 V AC 8.7 VA

Insulation resistance:

 $100~M\Omega$ at 500~V DC between input, output, power supply, and grounding terminals mutually.

Withstand voltage:

2000 V AC for 1 minute between input, output, power supply and grounding

terminals mutually.

1000 V AC for 1 minute between output-1 and output-2 terminals.

■ Environmental Conditions

Operating temperature range: 0 to 50°C

Operating humidity range: 5 to 90% RH (no condensation)

Operating conditions: Avoid installation in such

environments as corrosive gas like sulfide hydrogen, dust, sea breeze and direct sunlight.

Installation altitude: 2000 m or less above

sea level.

■ Mounting and Dimensions

Construction: Plug-in type

Material: Main unit: ABS resin (black), UL94 V-0

ABS resin + polycarbonate resin (black),

UL94 V-0

PBT resin, including glass fiber (black),

UL94 V-0

Socket: Modified polyphenylene oxide resin,

including glass fiber (black), UL94 V-1

Mounting: Wall or DIN rail mounting Connection: M3.5 screw terminals

External dimensions: 86.5 (H) \times 51 (W) \times 123 (D) mm

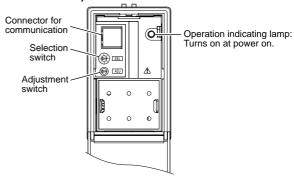
(including a socket)

Weight: Main unit: approx. 200 g

Socket: approx. 80 g

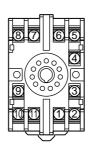
Accessories

Spacer: One (for DIN rail mounting)


Range label: One

■ Customized Signal Specifications

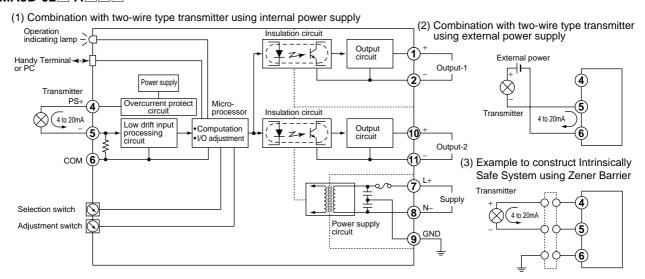
Output-2	Current signal	Voltage signal
Output range (DC)	0 to 20 mA	–10 to +10 V
Span (DC)	1 to 20 mA	10 mV to 20 V


■ Front Panel

Input/output can be adjusted using the selection switch and adjustment switch.

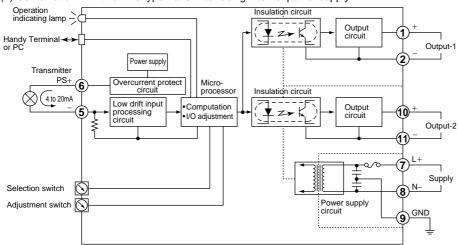
Position of selection switch	Item to be adjusted
0	No function
1	Output-1 zero adjustment
2	Output-1 span adjustment
3	Output-2 zero adjustment
4	Output-2 span adjustment
5	Input zero adjustment
6	Input span adjustment

■ Terminal Assignments

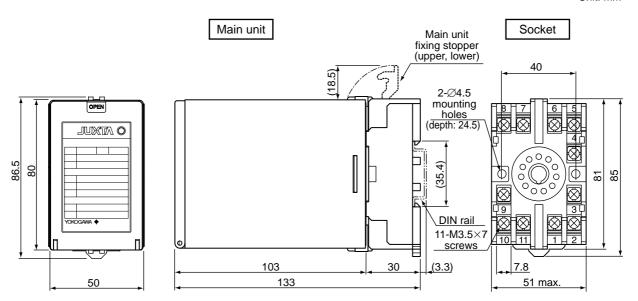

3				
MA5D - 02 □ - A □ □ □				
1	OUTPUT-1	(+)		
2	OUTPUT-1	(-)		
3	N.C.			
4	INPUT	(PS+)		
5	INPUT	(-)		
6	INPUT	(COM)		
7	SUPPLY	(L+)		
8	SUPPLY	(N-)		
9	GND	(GND)		
10	OUTPUT-2	(+)		
11	OUTPUT-2	(-)		

MA5	D - 12 □ - A □	
1	OUTPUT-1	(+)
2	OUTPUT-1	(-)
3	N.C.	
4	N.C.	
5	INPUT	(-)
6	INPUT	(PS+)
7	SUPPLY	(L+)
8	SUPPLY	(N-)
9	GND	(GND)
10	OUTPUT-2	(+)
11	OUTPUT-2	(-)
	·	

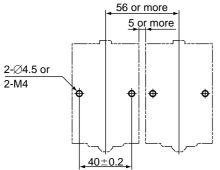
4


■ Block Diagrams

MA5D-02□-A□□□


MA5D-12□-**A**□□□

(1) Combination with two-wire type transmitter using internal power supply



■ External Dimensions

Unit: mm

<Mounting Dimensions>

Note:

- When mounting the units close together, leave a space of at least 5 mm between them.
- Use the supplied spacer to keep a space of 5 mm for DIN rail mounting.

■ Work Sheet

Model and Suffix Codes	
Number of breakpoints	

Write at least 2 points for input and output breakpoints data.

Input (%)		Output (%)		Ir	Input (%)		Output (%)	
X ₀		Y0	·	X16		Y16		
X1		Y1		X17		Y17		
X2		Y2		X18		Y18		
Хз		Y3		X19	·	Y19		
X4		Y4		X20	·	Y20		
X5		Y5		X21	·	Y21		
X6		Y6		X22		Y22		
X7		Y7		X23		Y23		
X8		Y8		X24		Y24		
X9		Y 9		X25	·	Y25		
X10		Y10		X26		Y26		
X11		Y11		X27	·	Y27		
X12		Y12		X28		Y28		
X13		Y13		X29		Y29		
X14		Y14		X30		Y30		
X15		Y15		X31		Y31		

(Specification conditions)

Input conditions: $-6.0\% \le X_0 < X_1 < X_2 < \cdots X_{n-1} < X_n \le 106.0\%$

Output conditions: $-6.0\% \le (Y_0 \text{ to } Y_n) \le 106.0\%$

[•] The information covered in this document is subject to change without notice for reasons of improvements in quality and/or performance.